A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: Analysis by intent to treat and development of a prognostic model Academic Article Article uri icon


MeSH Major

  • Brain Neoplasms
  • Lymphoma, Non-Hodgkin


  • Salvage of patients with relapsed and refractory Hodgkin disease (HD) with high-dose chemoradiotherapy (HDT) and autologous stem cell transplantation (ASCT) results in event-free survival (EFS) rates from 30% to 50%. Unfortunately, the reduction in toxicity associated with modern supportive care has improved EFS by only 5% to 10% and has not reduced the relapse rate. Results of a comprehensive 2-step protocol encompassing dose-dense and dose-intense second-line chemotherapy, followed by HDT and ASCT, are reported. Sixty-five consecutive patients, 22 with primary refractory HD and 43 with relapsed HD, were treated with 2 biweekly cycles of ifosfamide, carboplatin, and etoposide (ICE). Peripheral blood progenitor cells from responding patients were collected, and the patients were given accelerated fractionation involved field radiotherapy (IFRT) followed by cyclophosphamide-etoposide and either intensive accelerated fractionation total lymphoid irradiation or carmustine and ASCT. The EFS rate at a median follow-up of 43 months, as analyzed by intent to treat, was 58%. The response rate to ICE was 88%, and the EFS rate for patients who underwent transplantation was 68%. Cox regression analysis identified 3 factors before the initiation of ICE that predicted for outcome: B symptoms, extranodal disease, and complete remission duration of less than 1 year. EFS rates were 83% for patients with 0 to 1 adverse factors, 27% for patients with 2 factors, and 10% for patients with 3 factors (P <.001). These results compare favorably with other series and document the feasibility and efficacy of giving uniform dose-dense and dose-intense cytoreductive chemotherapy and integrating accelerated fractionation radiotherapy into an ASCT treatment program. This prognostic model provides a basis for risk-adapted HDT.

publication date

  • February 2001



  • Academic Article


Digital Object Identifier (DOI)

  • 10.1182/blood.V97.3.616

PubMed ID

  • 11157476

Additional Document Info

start page

  • 616

end page

  • 23


  • 97


  • 3