Potassium- and acetylcholine-induced vasorelaxation in mice lacking endothelial nitric oxide synthase Academic Article uri icon


MeSH Major

  • Acetylcholine
  • Muscle, Smooth, Vascular
  • Nitric Oxide Synthase
  • Potassium
  • Potassium Channels
  • Potassium Channels, Inwardly Rectifying


  • 1. The contribution of an endothelium-derived hyperpolarizing factor (EDHF) was investigated in saphenous and mesenteric arteries from endothelial nitric oxide synthase (eNOS) (-/-) and (+/+) mice. 2. Acetylcholine-induced endothelium-dependent relaxation of saphenous arteries of eNOS(-/-) was resistant to N(omega)-nitro-L-arginine (L-NNA) and indomethacin, as well as the guanylyl cyclase inhibitor, 1H-(1,2,4)oxadiazolo(4,3-a) quinoxalin-1-one(ODQ). 3. Potassium (K(+)) induced a dose-dependent vasorelaxation which was endothelium-independent and unaffected by either L-NNA or indomethacin in both saphenous and mesenteric arteries from eNOS(-/-) or (+/+) mice. 4. Thirty microM barium (Ba(2+)) and 10 microM ouabain partially blocked potassium-induced, but had no effect on acetylcholine-induced vasorelaxation in saphenous arteries. 5. Acetylcholine-induced relaxation was blocked by a combination of charybdotoxin (ChTX) and apamin which had no effect on K(+)-induced relaxation, however, iberiotoxin (IbTX) was ineffective against either acetylcholine- or K(+)-induced relaxation. 6. Thirty microM Ba(2+) partially blocked both K(+)- and acetylcholine-induced relaxation of mesenteric arteries, and K(+), but not acetylcholine-induced relaxation was totally blocked by the combination of Ba(2+) and ouabain. 7. These data indicate that acetylcholine-induced relaxation cannot be mimicked by elevating extracellular K(+) in saphenous arteries from either eNOS(-/-) or (+/+) mice, but K(+) may contribute to EDHF-mediated relaxation of mesenteric arteries.

publication date

  • March 28, 2000



  • Academic Article



  • eng

PubMed Central ID

  • PMC1571935

PubMed ID

  • 10725268

Additional Document Info

start page

  • 1194

end page

  • 200


  • 129


  • 6