Spring constants for channel-induced lipid bilayer deformations estimates using gramicidin channels Academic Article uri icon


MeSH Major

  • Ion Channels
  • Lipid Bilayers
  • Membrane Proteins


  • Hydrophobic interactions between a bilayer and its embedded membrane proteins couple protein conformational changes to changes in the packing of the surrounding lipids. The energetic cost of a protein conformational change therefore includes a contribution from the associated bilayer deformation energy (DeltaGdef0), which provides a mechanism for how membrane protein function depends on the bilayer material properties. Theoretical studies based on an elastic liquid-crystal model of the bilayer deformation show that DeltaGdef0 should be quantifiable by a phenomenological linear spring model, in which the bilayer mechanical characteristics are lumped into a single spring constant. The spring constant scales with the protein radius, meaning that one can use suitable reporter proteins for in situ measurements of the spring constant and thereby evaluate quantitatively the DeltaGdef0 associated with protein conformational changes. Gramicidin channels can be used as such reporter proteins because the channels form by the transmembrane assembly of two nonconducting monomers. The monomerleft arrow over right arrow dimer reaction thus constitutes a well characterized conformational transition, and it should be possible to determine the phenomenological spring constant describing the channel-induced bilayer deformation by examining how DeltaGdef0 varies as a function of a mismatch between the hydrophobic channel length and the unperturbed bilayer thickness. We show this is possible by analyzing experimental studies on the relation between bilayer thickness and gramicidin channel duration. The spring constant in nominally hydrocarbon-free bilayers agrees well with estimates based on a continuum analysis of inclusion-induced bilayer deformations using independently measured material constants.

publication date

  • June 17, 1999



  • Academic Article



  • eng

PubMed Central ID

  • PMC1300090

PubMed ID

  • 9929490

Additional Document Info

start page

  • 889

end page

  • 95


  • 76


  • 2