Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes Academic Article Article uri icon


MeSH Major

  • Antibodies, Bispecific
  • Antigens, Neoplasm
  • Antineoplastic Agents
  • Carcinoma, Hepatocellular
  • Immunotherapy
  • Liver Neoplasms
  • Receptors, Antigen
  • Recombinant Fusion Proteins


  • Most tumor cells function poorly as antigen-presenting cells in part because they do not express costimulatory molecules. To provide costimulation to T lymphocytes that recognize tumor cells, we constructed a CD28-like receptor specific for GD2, a ganglioside overexpressed on the surface of neuroblastoma, small-cell lung carcinoma, melanoma, and other human tumors. Recognition of GD2 was provided by a single-chain antibody derived from the GD2-specific monoclonal antibody 3G6. We demonstrate that the chimeric receptor 3G6-CD28 provides CD28 signaling upon specific recognition of the GD2 antigen on tumor cells. Human primary T lymphocytes retrovirally transduced with 3G6-CD28 secrete interleukin 2, survive proapoptotic culture conditions, and selectively undergo clonal expansion in the presence of an antiidiotypic antibody specific for 3G6-CD28. Polyclonal CD8(+) lymphocytes expressing 3G6-CD28 are selectively expanded when cultured with cells expressing allogeneic major histocompatibility complex class I together with GD2. Primary T cells given such an antigen-dependent survival advantage should be very useful to augment immune responses against tumor cells.

publication date

  • August 17, 1998



  • Academic Article


Digital Object Identifier (DOI)

  • 10.1084/jem.188.4.619

PubMed ID

  • 9705944

Additional Document Info

start page

  • 619

end page

  • 26


  • 188


  • 4