Caenorhabditis elegans contains two distinct acid sphingomyelinases Academic Article Article uri icon


MeSH Major

  • Apoptosis
  • Sphingolipids


  • Mounting evidence supports a role for acid sphingomyelinase (ASM) in cellular stress signaling. Only murine and human sphingomyelinases have been defined at the molecular level. These enzymes are the products of a conserved gene and at the amino acid level share 82% identity. In this study, we show that the nematode Caenorhabditis elegans possesses two ASMs, termed ASM-1 and ASM-2 encoded by two distinct genes, but lacks detectable neutral sphingomyelinase activity. The C. elegans ASMs are about 30% identical with each other and with the human and murine enzymes. The conserved regions include a saposin-like domain, proline-rich domain, and a putative signal peptide. In addition, 16 cysteines distributed throughout the molecules, and selected glycosylation sites, are conserved. The expression of these genes in C. elegans is regulated during development. Asm-1 is preferentially expressed in the embryo, whereas asm-2 is predominantly expressed in postembryonic stages. When transfected as Flag-tagged proteins into COS-7 cells, ASM-1 is found almost entirely in a secreted form whereas only 20% of ASM-2 is secreted. Only the secreted forms display enzymatic activity. Furthermore, ASM-2 requires addition of Zn2+ to be fully active, whereas ASM-1 is active in the absence of cation. C. elegans is the first organism to display two ASMs. This finding suggests the existence of an ASM gene family.

publication date

  • June 5, 1998



  • Academic Article


Digital Object Identifier (DOI)

  • 10.1074/jbc.273.23.14374

PubMed ID

  • 9603947

Additional Document Info

start page

  • 14374

end page

  • 9


  • 273


  • 23