Extracellular human immunodeficiency virus type-1 Tat protein activates phosphatidylinositol 3-kinase in PC12 neuronal cells Academic Article uri icon

Overview

MeSH Major

  • Diagnostic Techniques and Procedures
  • Laboratories
  • Magnetics

abstract

  • We have here investigated the effect of the regulatory Tat protein of the human immunodeficiency virus type 1 (HIV-1) on the PI 3-kinase catalytic activity in PC12 rat pheochromocytoma cells. After as early as 1 min from the beginning of the treatment with recombinant HIV-1 Tat protein, a significant increase in the tyrosine phosphorylation levels of the p85 regulatory subunit of PI 3-kinase was noticed in 48 h serum-starved PC12 cells. Moreover, the addition of Tat to PC12 cells induced a great increase in PI 3-kinase immunoprecipitated with an anti-phosphotyrosine antibody with a peak of activity (19-fold increase with respect to the basal levels) after a 15-min treatment. This increase in PI 3-kinase activity was significantly higher in PC12 cell cultures supplemented with Tat protein than in cultures stimulated by 100 ng/ml nerve growth factor (NGF; 8-fold increase with respect to the basal levels). Further experiments showed that Tat protein was able to specifically activate PI 3-kinase at picomolar concentrations. In fact: (i) maximal activation of PI 3-kinase was observed at concentrations as low as 1 ng/ml and was specifically blocked by anti-Tat neutralizing antibody; (ii) a Tat-dependent activation was also observed in experiments in which PI 3-kinase activity was evaluated in either anti-Tyr(P) or anti-p85 immunoprecipitates; (iii) 100 nM wortmannin completely blocked the Tat-mediated increase in PI 3-kinase activity both in vitro and in vivo. Our data strongly support the concept that extracellular Tat acts as a cell stimulator, inducing intracellular signal transduction in uninfected cells.

publication date

  • September 30, 1996

Research

keywords

  • Academic Article

Identity

Digital Object Identifier (DOI)

  • 10.1074/jbc.271.38.22961

Additional Document Info

start page

  • 22961

end page

  • 4

volume

  • 271

number

  • 38