Current therapy Editorial Article uri icon

Overview

MeSH Major

  • Carcinoma in Situ
  • Neoplasms, Germ Cell and Embryonal
  • Testicular Neoplasms

abstract

  • Nuclear matrix organizes the mammalian chromatin into loops. This is achieved by binding of nuclear matrix proteins to characteristic DNA landmarks in introns as well as proximal and distal sites flanking the 5' and 3' ends of genes. Matrix anchorage sites (MARs), origins of replication (ORIs), and homeotic protein binding sites share common DNA sequence motifs. In particular, the ATTA and ATTTA motifs, which constitute the core elements recognized by the homeobox domain from species as divergent as flies and humans, are frequently occurring in the matrix attachment sites of several genes. The human apolipoprotein B 3' MAR and a stretch of the Chinese hamster DHFR gene intron and human HPRT gene intron shown to anchor these genes to the nuclear matrix are mosaics of ATTA and ATTTA motifs. Several origins of replication also share these elements. This observation suggests that homeotic proteins which control the expression level of many genes and pattern formation during development are components of the nuclear matrix. Thus, the nuclear matrix, known as the site of DNA replication, might sculpture the crossroads of the differential activation of origins during development and S-phase and the control of gene expression and pattern formation in embryogenesis.

publication date

  • December 1992

Research

keywords

  • Editorial

Additional Document Info

start page

  • 111

end page

  • 23

volume

  • 50

number

  • SUPPL. 16 I