Modulation of airway inflammation in cystic fibrosis: In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor Academic Article uri icon

Overview

MeSH Major

  • Cystic Fibrosis
  • Inflammation
  • Interleukin-8
  • Proteins
  • Respiratory System
  • Serine Proteinase Inhibitors

abstract

  • Based on the knowledge that neutrophil elastase (NE) in cystic fibrosis (CF) epithelial lining fluid (ELF) can induce human bronchial epithelial cells to express the gene for interleukin 8 (IL-8), an 8.5-kD neutrophil chemoattractant, we have evaluated CF ELF for the presence of IL-8, and investigated the ability of aerosolized recombinant secretory leukoprotease inhibitor (rSLPI) to suppress NE, and hence IL-8, levels on the respiratory epithelial surface in CF. Enzyme-linked immunoassay revealed 21.9 +/- 4.8 nM IL-8 in CF ELF compared with none in normals. Active NE was detectable in ELF of all individuals with CF and was significantly decreased (P < 0.03) after aerosolization of rSLPI. Human bronchial epithelial cells exposed to CF ELF recovered before rSLPI therapy expressed IL-8 mRNA transcripts, but ELF recovered after rSLPI therapy induced far less bronchial epithelial cell IL-8 gene expression. Consistent with this, rSLPI aerosol therapy caused a marked reduction in CF ELF IL-8 levels (P < 0.05) and neutrophil number (P < 0.02). There was also a clear association between CF ELF active NE and IL-8 levels (r = 0.94). These data suggest that rSLPI therapy not only suppresses respiratory epithelial NE levels, but also breaks a cycle of inflammation on the CF epithelial surface.

publication date

  • October 1992

Research

keywords

  • Academic Article

Identity

Language

  • eng

PubMed Central ID

  • PMC443173

PubMed ID

  • 1357002

Additional Document Info

start page

  • 1296

end page

  • 301

volume

  • 90

number

  • 4