Effect of induced hypercapnia on anaerobic metabolic rate of anoxic musk turtles Academic Article uri icon

Overview

MeSH Major

  • Carbon Dioxide
  • Energy Metabolism
  • Turtles

abstract

  • To evaluate the possible effect of induced hypercapnia on anaerobic metabolic rate during anoxia, musk turtles (Sternotherus odoratus) were submerged in N2-equilibrated water at 10 degrees C for 3 days either with (anoxic hypercapnic) or without (anoxic normocapnic) elevated aquatic PCO2 (30-40 Torr). Control animals had access to air at 10 degrees C. Plasma [lactate] was significantly higher (P less than 0.01) in the normocapnic [59.4 +/- 7.4 (SD) mM; n = 22] than in the hypercapnic (47.4 +/- 8.5 mM; n = 19) anoxic turtles, although the hypercapnic turtles had lower blood pH (P less than 0.05). Plasma ion concentrations (Na, K, Cl, Ca, and Mg), however, were no different in the two groups, although all values other than Na were different from control. In some of the animals, [lactate] and [glycogen] (per g wet wt) of skeletal muscle, heart, and liver were measured in addition to blood acid-base values and lactate. Tissue lactates, although significantly elevated from control, and glycogens, although (with the exception of skeletal muscle) significantly reduced from control, were no different in the two anoxic groups. We suggest that these tissue data are more valid indicators of anaerobic metabolic rate than is plasma lactate and therefore conclude that induced hypercapnia does not significantly depress anaerobiosis in musk turtles at 10 degrees C.

publication date

  • January 1988

Research

keywords

  • Academic Article

Identity

Language

  • eng

PubMed ID

  • 3132862

Additional Document Info

start page

  • R944

end page

  • 8

volume

  • 254

number

  • 6