Binding of plasminogen to cultured human endothelial cells Academic Article uri icon

Overview

MeSH Major

  • Endothelium
  • Muscle, Smooth, Vascular
  • Plasminogen
  • Plasminogen Activators

abstract

  • Endothelial cells are known to release the two major forms of plasminogen activator, tissue plasminogen activator (TPA) and urokinase. We have previously demonstrated that plasminogen (PLG) immobilized on various surfaces forms a substrate for efficient conversion to plasmin by TPA (Silverstein, R. L., Nachman, R. L., Leung, L. L. K., and Harpel, P. C. (1985) J. Biol. Chem. 260, 10346-10352). We now report the binding of human PLG to cultured human umbilical vein endothelial cell (HUVEC) monolayers, utilizing a newly devised cell monolayer enzyme-linked immunosorbent assay system. PLG binding to HUVEC was concentration dependent and saturable at physiologic PLG concentration (2 microM). Binding of PLG was 70-80% inhibited by 10 mM epsilon-aminocaproic acid, suggesting that it is largely mediated by the lysine-binding sites of PLG. PLG bound at an intermediate level to human fibroblasts, poorly to human smooth muscle cells, and not at all to bovine smooth muscle or bovine endothelial cells; unrelated proteins such as human albumin and IgG failed to bind HUVEC. PLG binding to HUVEC was rapid, reaching a steady state within 20 min, and quickly reversible. 125I-PLG bound to HUVEC with an estimated Kd of 310 +/- 235 nM (S.E.); each cell contained 1,400,000 +/- 1,000,000 (S.E.) binding sites. Functional studies demonstrated that HUVEC-bound PLG is activatable by TPA according to Michaelis-Menten kinetics (Km, 5.9 nM). Importantly, surface-bound PLG was activated with a 12.7-fold greater catalytic efficiency than fluid phase PLG. These results indicate that PLG binds to HUVEC in a specific and functional manner. Binding of PLG to endothelial cells may play a pivotal role in modulating thrombotic events at the vessel surface.

publication date

  • December 1986

Research

keywords

  • Academic Article

Identity

Language

  • eng

PubMed ID

  • 3745161

Additional Document Info

start page

  • 11656

end page

  • 62

volume

  • 261

number

  • 25