Elastin mRNA levels foetal development of sheep nuchal ligament and lung. Hybridization to complementary and cloned DNA Academic Article uri icon


MeSH Major

  • Elastin
  • Ligaments
  • Lung
  • RNA, Messenger


  • Elastin mRNA levels were quantified in sheep nuchal ligament and lung during the latter half of foetal development with elastin-specific cDNA (complementary DNA) probes using both hybridization in solution (saturation analysis) and hybridization on a fixed support (Northern analysis). For the solution-hybridization studies, cDNA prepared from nuchal-ligament mRNA was enriched to 65% for elastin sequences by hybridizing it to its template at a R0t (mol X s X litre-1) value that included only the abundant class of mRNA sequences. Hybridization of this probe to RNA extracted from nuchal ligament between 70 and 138 days after conception demonstrated elastin sequences increased about 10-fold (from 0.047 to 0.438% of total RNA). In contrast, lung elastin mRNA levels increased only 3-fold (from 0.009 to 0.022% of total RNA) during the same period. Over this development period these values correspond to increases in the average number of elastin mRNA molecules from 950 to 20 000 molecules/ligament cell and from 130 to 330 molecules/lung cell. For Northern analysis, elastin mRNA was purified from near-term-sheep nuchal ligament on sucrose density gradients. Analysis of the translation products of this elastin mRNA showed that relative elastin precursor synthesis was at least 80% of total [3H]valine incorporation. The Mr of this elastin mRNA, determined by methylmercury-agarose-gel electrophoresis, was approx. 1.25 X 10(6). Northern hybridization of nuchal ligament and lung RNA to a [32P]cDNA probe, transcribed from this sucrose-gradient-purified elastin mRNA, confirmed the developmental changes in elastin mRNA levels detected by solution-hybridization techniques. The specificity of this method was confirmed by using a cloned elastin gene fragment. These studies demonstrate that elastin mRNA levels in organs such as nuchal ligament and lung increase with foetal development, but that there are significant differences in the average cellular elastin mRNA content of these two organs.

publication date

  • August 9, 1984



  • Academic Article



  • eng

PubMed Central ID

  • PMC1153681

PubMed ID

  • 6547836

Additional Document Info

start page

  • 653

end page

  • 63


  • 220


  • 3