Relation of hemodynamic load to left ventricular hypertrophy and performance in hypertension Academic Article Article uri icon


MeSH Major

  • Cardiovascular Diseases
  • Diabetes Mellitus, Type 2
  • Hypertrophy, Left Ventricular


  • Left ventricular hypertrophy and dysfunction in patients with hypertension are often poorly related to the level of blood pressure. To evaluate the reasons for this, 100 untreated patients (44 +/- 14 years) with essential hypertension were studied using cuff blood pressure and quantitative echocardiography to measure left ventricular mass index and end-diastolic relative wall thickness as 2 indexes of left ventricular hypertrophy. Left ventricular hypertrophy, as measured by either left ventricular mass index or end-diastolic relative wall thickness, correlated weakly with all indexes of blood pressure including systolic, diastolic, and mean blood pressure (r = 0.16 to 0.32). In contrast, end-diastolic relative wall thickness, an index which assesses the severity of concentric hypertrophy, showed a closer direct relation with total peripheral resistance (r = 0.52 p less than 0.001) and a significant inverse relation with cardiac index (r = -0.47, p less than 0.001). Left ventricular performance as assessed by fractional systolic shortening of left ventricular internal dimensions was not significantly related to left ventricular mass index, blood pressure, or peak systolic wall stress, but declined significantly with increasing mean systolic wall stress (r = -0.42, p less than 0.001) and even more with increasing end-systolic wall stress (r = -0.71, p less than 0.001). It is concluded that in patients with hypertension (1) left ventricular hypertrophy is correlated only modestly with measurements of resting blood pressure; and (2) the classic pattern of concentric left ventricular hypertrophy, as measured by relative wall thickness, is more closely related to the "typical" hypertensive abnormality of elevated peripheral resistance, suggesting that these anatomic and hemodynamic changes may be pathophysiologically interdependent. Furthermore, left ventricular performance declines when the pressure overload in hypertension is not offset by compensating hypertrophy, allowing wall stresses to increase.

publication date

  • January 1983



  • Academic Article


Digital Object Identifier (DOI)

  • 10.1016/S0002-9149(83)80031-9

PubMed ID

  • 6217738

Additional Document Info

start page

  • 171

end page

  • 6


  • 51


  • 1