Cloning of two genetically transmitted Moloney leukemia proviral genomes: Correlation between biological activity of the cloned DNA and viral genome activation in the animal Academic Article uri icon

Overview

MeSH Major

  • Cloning, Molecular
  • Genes, Viral
  • Moloney murine leukemia virus
  • Virus Activation

abstract

  • The Mov-7 and Mov-9 substrains of mice, carrying Moloney murine leukemia virus (M-MuLV) in their germ line at the Mov-7 locus and Mov-9 locus, respectively, are different with respect to virus activation. Infectious virus appears in all mice carrying the Mov-9 locus but is not activated in animals carrying the Mov-7 locus. Consequently, only Mov-9 mice develop viremia and subsequent leukemia. The endogenous M-MuLV provirus with flanking mouse sequences corresponding to the Mov-7 and Mov-9 loci was molecularly cloned. Detailed restriction maps obtained from the cloned DNAs revealed no detectable differences in the proviral genomes. The flanking mouse sequences, however, were different, confirming that the Mov-7 and Mov-9 loci represent different integration sites of M-MuLV. Both clones induced XC plaques in a transfection assay. The specific infectivity of the clones, however, was different. A total of 10(-5) XC plaques per genome equivalent were induced by the Mov-9 clone, whereas only 10(-9) XC plaques per genome equivalent were induced by the Mov-7 clone. Moreover, NIH 3T3 cells transfected with the Mov-9 clone produced NB-tropic M-MuLV, whereas cells transfected with the Mov-7 clone did not produce infectious virus. The results suggest that M-MuLV integrated at the Mov-7 locus carries a mutation which prevents synthesis of infectious virus but permits XC plaque induction by partial genome expression or synthesis of noninfectious particles. Thus, the pattern of virus expression in Mov-7 and Mov-9 mice correlates with the biological properties of the respective clones. Genomic DNA from Mov-9 mice was not infectious in the transfection assay (specific infectivity < 10(-7) PFU per genome equivalent). As the only difference between the genomic and the cloned Mov-9 DNA appears to be the presence of 5-methylcytosine in CpG sequences, our results suggest that removal of methyl groups by molecular cloning in procaryotes permits genome expression in transfected eucaryotic cells. Our results support the hypothesis that DNA methylation is relevant not only in genome expression in the animal but also in expression of genes transfected into eucaryotic cells.

publication date

  • January 1982

Research

keywords

  • Academic Article

Identity

Language

  • eng

PubMed Central ID

  • PMC256946

PubMed ID

  • 6284989

Additional Document Info

start page

  • 1088

end page

  • 98

volume

  • 42

number

  • 3