α2Macroglobulin binding to the plasma membrane at cultured fibroblasts. Diffuse binding followed by clustering in coated regions Academic Article uri icon

Overview

MeSH Major

  • Cell Membrane
  • Receptors, Drug
  • alpha-Macroglobulins

abstract

  • Using transmission electron microscopy, we have studied the interaction of alpha 2 macroglobulin (alpha 2 M) with the surface of cultured fibroblasts. When cells were incubated for 2 h at 4 degrees C with ferritin-conjugated alpha 2 M, approximately 90% of the alpha 2 M was diffusely distributed on the cell surface, and the other 10% was concentrated in "coated" pits. A pattern of diffuse labeling with some clustering in "coated" pits was also obtained when cells were incubated for 5 min at 4 degrees C with alpha 2 M, fixed with glutaraldehyde, and the alpha 2 M was localized with affinity-purified, peroxidase-labeled antibody to alpha 2 M. Experiments in which cells were fixed with 0.2% paraformaldehyde before incubation with alpha 2 M showed that the native distribution of alpha 2 M receptors was entirely diffuse without significant clustering in "coated" pits. This indicates that some redistribution of the alpha 2 M-receptor complexes into clusters occurred even at 4 degrees C. In experiments with concanavalin A(Con A), we found that some of the Con A clustered in coated regions of the membrane and was internalized in coated vesicles, but much of the Con A was directly internalized in uncoated vesicles or pinosomes. We conclude that unoccupied alpha 2 M receptors are diffusely distributed on the cell surface. When alpha 2 M-receptor complexes are formed, they rapidly cluster in coated regions or pits in the plasma membrane and subsequently are internalized in coated vesicles. Because insulin and epidermal growth factor are internalized in the same structures as alpha 2 M (Maxfield, F.R., J. Schlessinger, Y. Schechter, I. Pastan, and M.C. Willingham. 1978. Cell, 14: 805--810.), we suggest that all peptide hormones, as well as other proteins that enter the cell by receptor-mediated endocytosis, follow this same pathway.

publication date

  • December 1979

Research

keywords

  • Academic Article

Identity

Language

  • eng

PubMed Central ID

  • PMC2110490

PubMed ID

  • 92473

Additional Document Info

start page

  • 614

end page

  • 25

volume

  • 82

number

  • 3